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Layering transitions in the Abraham model 

C L O'Donnell and J M Yeomans 
Theoretical Physics, University of Oxford, I Keble Road, Oxford OX1 3NP, UK 

Received 18 November 1993 

Absbact. We show by means of a low-temperahre series expansion that a large. possibly 
infinite number of interface layering transitions are observed for the Abraham model in 
dimensions d > 3. 

1. Introduction 

In this paper we consider an interface unbinding from a surface at low temperatures in the 
(d > 3)-dimensional Abraham model [l]. We are working below the roughening temperature 
and the effect of the lattice is that unbinding, or wetting, can take place through a series of 
first-order steps or layering transitions [Z, 31. Our aim is to use a low-temperature series 
approach, first introduced for interface problems by Duxbury and Yeomans [4], and based 
on work by Fisher and Selke [5] ,  to understand the structure of the layering transitions in 
the Abraham model and their dependence on the co-ordination number of the lattice. 

A wetting transition that takes place as a bulk field tends to zero is called complete 
wetting. For the three-dimensional king model with short-range interactions, Duxbury and 
Yeomans [4] showed that complete wetting takes place through an infinite series of layering 
transitions. 

Another possibility is that the unbinding transition should be driven by a varying surface 
field. The paradigm of this case for the king system is the Abraham model where the 
interface is pinned by a suface field. Here the situation has remained unclear. In their 
treatment of the model, Duxbury and Yeomans 141 were able to establish the existence of 
one layering transition but did not carry the low-temperature series to high enough order 
to predict whether or not more transitions were stable. Armitstead and Yeomans [6] found 
that for a solid-on-solid version of the model, where overhangs of the interface and bulk 
fluctuations were neglected, an infinite series of layering transitions could be established. 
A Monte Carlo investigation by Binder and Landau [7] provided evidence for two layering 
transitions. They speculated on the possibility of a larger number lying beyond the resolution 
of the numerical approach. 

Therefore the aim of this work is to reconsider the Abraham model in d > 3 at low 
temperatures to understand more fully how the wetting transition comes about. We show that 
the difficulty in using a low-temperature series approach to treat this problem arises because 
a given phase is stabilized only at a relatively high order of the expansion compared to the 
distance of the interface from the surface. Therefore many diagrams contribute to the free- 
energy difference between phases with different interface positions making a general-order 
calculation prohibitively difficult. 

We are able to establish that there are at least four layering transitions in the Abraham 
model on a simple cubic lattice. Using a simplified version of the model an argument for 
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Figure 1. Schematic representation of the Abraham model, i labels the planes perpendicular to 
the axial direction and n the position of the interface. 

the existence of a large, probably infinite sequence beyond thii is proposed. We consider 
the dependence of our results on the co-ordination number of the lattice and demonstrate 
that the qualitative nature of the layering transitions is unaltered. Hence, to the order we 
can take the calculations, mean-field theory gives a qualitatively correct representation of 
the low-temperature phase diagram. 

2. The Abraham model 

Consider a d-dimensional lattice with periodic boundary conditions in (d - 1) directions. 
An interface is introduced perpendicular to the special or axial direction by imposing an 
infinite surface field at one end and a finite field of opposite sign at the other as shown in 
figure 1. king spins S;,j = f l  interact through the Abraham model Hamiltonian 

where the pair interactions are ferromagnetic and extend over nearat-neighbour sites. The 
subscript i labels the layers along the axial direction with i = 0 being the surface layer. J 
is the interaction between layers and Jo the interaction within each layer. We use n to label 
the position of the interface with n = 0 describing the situation with no interface. Let q A  
be the co-ordination number within the layers. For a hypercubic lattice q ~ .  = 2(d - 1). The 
co-ordination number along the axial direction will be taken equal to 2. 

The layering transitions in the Abraham model are driven by the surface field, H,. For 
Hs < J the ground state is n = 0 (no interface). For Hs = J all positions of the interface 
are degenerate at zero temperature. For H, > J all phases n >, 1 are degenerate. At finite 
temperature, entropic contributions to the free energy will break this degeneracy possibly 
leading to a sequence of first-order layering transitions. This is shown schematically in 
figure 2. In the next section we show how these contributions can be calculated using a 
low-temperature series expansion. 
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T 

Figure 2. Schematic low-temperature phase diagram of the Abraham model in dimensions 
d > 3. 

3. The low-temperature series expansion 

To establish the existence of a sequence of layering transitions, the phase diagram for the 
Abraham model must be studied~at non-zero temperatures. This involves the consideration 
of spin flips about all degenerate ground states. The low-temperature expansion follows as 
usual from a decomposition of the the partition function [SI 

where n labels the position of the interface at T = 0, E: is the ground-state energy per 
spin for the interface in position n, N is the total number of spins in the lattice, ks is 
Boltzmann's constant and AZ:(N)  is the total contribution from states with m overturned 
spins. The reduced free-energy per spin is given by 

where the prime on the summation indicates that only terms which are linear in N are 
included, a consequence of the linked-cluster theorem [SI. 

Even for rather small values of m, listing and counting all the different spin 
configurations with their associated Boltzmann weights is a substantial task. The 
simplification pertinent to the present problem is to compare the free energies of two different 
interfacial positions. The majority of the contributions to the individual free energies will 
be the same for both values of n and we need only concentrate on the much smaller number 
of terms which contribute in leading order to the free-energy difference. 

The Boltzmann factors which appear in the expansion are: 

x = exp(-2gJ) 

o = exp(-2,9Jb) 

: the contribution for introducing a wrong bond perpendicular 

: for introducing a wrong bond parallel to the interface 
to the interface 
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h, = exp(-2gHs) 
The aim is to find the interface position n which, for a given H, and T ,  maximizes 

the reduced free energy. The summation in (3) may be expressed as a power series in the 
parameter U. We assume that the intra-planar interactions are strong enough so that w is 
sufficiently small that the form of the phase diagram may be deduced from the leading-order 
terms of the expansion, with higher-order corrections yielding only a small shift of the phase 
boundaries. 

: for flipping a surface spin away from the field direction. 

4. Phase boundaries 

To investigate the low-order layering transitions of the Abraham model we expand h, in 
terms of oqJ 

and consider in tum 011, 012, . . .. In general, on a lattice with no loops, the expansion of h, 
will contain terms O ( W " Q - ~ )  where n = 1 ,2 ,3 , .  . . and m = n - 1, n - 2 , .  . . , 1,O. It 
follows immediately from (4) .that 

-28 Hs = -2s  J + ~ Y I W ' L  + 01pa'-Z + (013 - i01:)oa' + 0 1 4 ~ " 7 - ~  

+(U5 - Or7012)03qL-2 + ( (U6 - q O 1 3  + + 4 ) 0 3 9 L  +cqw*'.-6 + . . , . (5) 
Where it is necessary to distinguish a pmicular phase boundary, between interface phases 
n + 1 and n ,  say, we shall write ( ~ Z V ~ ) ~ + I : ~ ,  ( f f~ )~+ l : , ,  and so on. 

4.1. Calculation of 011 

' The first step is to calculate ( 0 1 ~ ) ~ + l : ~  and show that it is independent of n. Consider which 
diagrams contribute to the reduced free-energy difference fn+l - fn. Only certain diagrams 
which span the distance between the interface and the surface do not drop out when the 
free-energy difference is taken. Physically this is reasonable: only those excitations of the 
interface which lead to its touching the surface can information about its position 
relative to the surface. Of these, those which contribute at lowest order are certain axial 
chains of length n ,  shown in figure 3. All possible diagrams corresponding to disconnections 
of the axial chains must also be included (see figure 4). It follows from the linked-cluster 
theorem that each disconnection is associated with a factor of -1 [SI. The axial chains of 
length n give a contribution to fa+] - fn of 

(1 - - x Z + h , x - h , - x - ' ) ( l - x 2 ~ - l w " "  n ) l .  (6) 
Using (4) to substitute for h, it is immediately apparent that the leading term in (6) is 
O(o(n+l)ql) not O(w"q~).  Other diagrams will be relevant at this order. It is easy to check 
that all other diagrams of length n along the axial direction give a contribution of at least 
O(w("+2)qr). Of the diagrams that span n+ 1 sites, only certain axial chains of length n+ 1, 
together with their disconnections, need be considered 0(w("+"qL). The relevant diagrams 
are shown in figure 5. Putting the resulting term together with (6) and using (4) gives 

(7) 

(8) 

fn+l - fn = [(I - x*)~+'  - 011 (1 - - x 2 ) n ) ~ ( " + l ) q ~  + O(W'"+"") n 2 I .  
On the boundary between n and n + 1 the free-energy difference must be zero. Hence 

2 f f ]  = (1 - - x  ) 
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Figure 3. Diagrams which contribute to the reduced 
freeenergy difference fa+,  - f. at O ( d q l )  (shown 
here for n = 3). Spins Sj = - I ,+ l  are denoted by 
-, + respectively. A caret denotes a spin Rip. (a) 
Contributions from f.+l. (b)  Contributions from f. 
which a factor (-I) when the difference is taken. 
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+ + +  _ _ _  
(I>) 

i f f  

( C )  

Figure 4. Example of (a) a connected diagram O(o*i) 
and, (b) and (c). corresponding axially disconnected 
diagrams which carry factors of (-1) and (-1)* 
respectively. 

for all n > 1 .  

single spin flips 
The free-energy difference fi - fo  can be calculated in a similar way. Considering only 

f ,  - fo = 2B(HS - J )  + (1 - x z  + h,x-' - h;'x)wq' + o(oQ'-*) (9) 
and it follows immediately from the leading-order terms in (4) and (5) that the expression 
(8) for (11 also holds for n = 0. Hence to this order there is a shift but no splitting of the 
phase boundary between the phases n = 0 and n >, 1. 

Proceeding to higher orders the calculation rapidly becomes more complex and it will 
be helpful to summarize the contributing diagrams in tabular form. The relevant diagrams 
O(o("+')Q), which are needed to calculate 011. are shown in table 1 for n = 1.2, 3,4. A 
caret denotes a flipped spin. The table gives the topology of the relevant diagrams. However, 
they must be positioned correctly relative to the interface for their contribution not to drop 
out when the free-energy difference is taken. All axial disconnections must be taken into 
account. The quantity 011 at the beginning of a row indicates that the corresponding diagrams 
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Figure 5. Diagram which contribute to the reduced freeenergy difference 
fn+t  - f. at O(w@+l'ql) (shown here for n = 3). (a)  Contributions 
from fn+t.  (b) Contributions from f. which carry a factor (-I) when the 

' ' 
(b) difference is taken. 

Table 1. Diagrams which contribute to the freeenergy differences fn+l - fn, n = 0. 1.2.3 at 
O ( W ' " ~ ) ~ ~ ) .  A caret denotes a Ripped spin. The diagrams must be placed on the lattice such 
that they form chains along the axial dmction and must lie in the correct position relative to the 
interface for their contribution not to cancel out when the free-energy difference is taken. All 
axial disconnections must be laken into accounl. Rows labelled (1" contribute to the required 
order when the term in the expansion of h, proportional to (1. is substituted into the contribution 
from the diagram. 

Table 2. Contriburing diagrams at O ( U [ ~ + ~ ) ~ I - ~ ) ,  

give a contribution to the free energy difference O ( O ( " + ' ) ~ ~ )  and proportional to 011 when 
h, is expanded O(uQ). 

4.2. Calculation of a2 

To calculate (YZ, terms O ( W ( " + ~ ) ~ ~ - ~ )  in the reduced free-energy differences are needed. 
The relevant diagrams, for low n, are listed in table 2. As before, the diagrams must be 
positioned correctly relative to the interface for their contribution not to drop out when the 
free-energy difference is taken. Axial, but not in-plane disconnections must be included: 
the latter contribute to higher order in W .  The rows labelled (YI and a12 in table 2 give a 
contribution io the required order when the terms in h, of O(wQ) and O ( W % ~ - ~ )  respectively 
from (4) are substituted into the free-energy difference. 

Summing the contributions from the graphs listed in table 2 and using equations (4) and 
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(8) gives the term O ( W ( " + ~ ) " - ~ )  In ' f"+l - f n  

[?(I - x4) - 2Lyz } 
{q1x2(1 -x2)" - o(z(1 - x 1 n I 

n = O  

2 "-1 

from which it follows immediately that 
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Equation (IO) shows that there is a splitting of the boundaries. Hence at this order n = 1 
has been shown to be a stable phase. All phases with n > 1 remain degenerate on the 1 :cc 
boundary. 

4.3. Higher order terms 

The calculation proceeds iteratively with terms in the free-energy differences o ( & + ~ ) ~ J - P )  

enabling the calculation of fhe coefficient O(d"1-P) in the expansion (4) of h,. The 
diagrams which contribute at each order are listed in tables 3-7. The number and complexity 
of the diagrams increases quickly as the expansion proceeds. Calculating the contribution 
to the low-temperature series from each diagram is laborious but not difficult. In each 
case it comprises the count together with the Boltzmann factor for the diagram placed 
at the appropriate position on the lattice relative to the interface. In every case all axial 
disconnections must be included. In-plane disconnections contribute explicitly to the order 
of the graph and arc marked in the tabIes by a horizontal bar. A list of the contributions of 
each graph is available [Y]. 

Table 3. Contributing diagrams at O(w'"+2h) :  a bar represents an in-plane disconnection. 

f l - f a  fi-fl A - f 2  fa-~fi 
- 
I^ .~ "  "..* 

I I - Î 

. .. " ~ -  
I - _I 

a] - 
.. .^. 

01 
a1 - 

Table 4. Contributing diagrams at O ( ~ " + " W ~ ) ,  
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Table 5. Conrribuiing diagrams at O [ W ' " ~ ' V ~ - ~ )  

It has been possible to obtain results O ( W ( ~ ~ ) Q - ~ )  and hence to calculate ( u I ) ~ + I : ~  . . . 
( I Y ~ ) ~ + I : ~  for n = 0,1,2,3: 

(11) 2 
(011) l :O = (Ul)Z:l = (a1)3:2 = ('2*1)4:3 = 1 - x  
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Table 7. Contributing Diagrams at O ( ~ ( " * ~ k l - ~ ) ,  
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fl - .li, f2 - fi .h -.A f4 - f3 

(a6)]:0= (1 -x2)(4- 8 ~ ' + 5 ~ ~ ) +  $q12(1 - X ~ ) - & ~ ( I - X ~ ) ( ~ + X ~ - ~ X ~ )  

(a6)6)2:1 = (E6)32 = (a6)4:3 

(a7)I:O = i q l (1  -qd2(1 - X 8 )  

(a,)2:, = -fql(l--x2)[2(1+x*-4x6)-4qL 2 6  X - q 1 ( l + x 2 + x 4 -  11x91 

2 4 3 2 4  (16) 
(1 -X2)[(1 -5X  + 5 X  ) f IqJ. X - $41X2(2 - 3 X 2 ) )  

(17) 
= fq l ( l  - x2)[(1 - xZ - 1 lx4 + 15x6) + 2q,x4(3 - 7x2)  +4q12x6]  

(a7)4:3 = q1x2(1 - XZ)[( 1 - 7x2 + 8 x 4 )  + 41x2(3 - 7 x 2 )  + 2412x41. 

It is apparent from these results that the first difference in the 0: 1 and 1 :2  boundaries is in 
the coefficient a2. Hence the width of the interface phase n = 1 is O(O*~-~). Similarly, 
the 1 : 2 and the 2 : 3 boundaries are distinguished by a4 and the n = 2 phase has width 
O(w3q1-')). The 2 : 3 and 3 : 4 boundaries are distinguished by a, and the n = 3 phase 
has width O(O*'-~). This pattern suggests that there is indeed a sequence of layering 
transitions with the interface phase n having a width O(O'"+~'"-~). Further evidence for 
this assertion is given in section 6 where a simplified version of the Abraham model is 
considered for which it is possible to take the expansion to higher orders. 

5. The simple cubic lattice 

The results for the phase boundaries presented in section 4 refer to a lattice without closed 
loops. On any physically realistic lattice, diagrams which include such loops will be 
important as the series is taken to higher orders. As an example of the~role of loop 
diagrams we consider the case of the simple cubic lattice. We find, for this case at least, 
that these diagrams shift the positions of the phase boundaries but do not affect the pattern 
of the splitting. 

For the simple cubic lattice we shall need to include in (4) the additional terms 

X ( ~ ~ O * L +  + ~ ~ 0 ~ 9 r - ~ ~  + a 1 0 ~ @ r - 1 4  ). (18) 
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The looped diagrams which occur at lowest order are rings of four spins lying within 
the same layer with attached chains running along the axial direction. They contribute 
O ( W ( " + ~ ) ~ ~ - ~ ) .  Using a tilde to represent such a ring. the relevant diagrams are listed in 
table 8. We shall also need diagrams O ( W ( " + ~ ) ~ ~ - ' ~ )  and O(O("+~)Q-'~) which are listed in 
tables 9 and 10. The notation ' is used to denote six spins within a layer arranged in two 
rings of four spins which share a side; Summing the contribution from these diagrams and 
using (18) gives 

C L O'Donnell and J M Yeomans 

Table 8. Additional contributions O(d"+4)qL-t) which appear for the simple cubic lattice. 
denotes a ring of four spins perpendicular to the axial dimtion. 

Table 9. Additional contributions O ( O ~ " + ~ ' ~ ~ - ~ ~ ' )  which appear for the simple cubic lattice. 

Putting 41 = 4 the diagrams listed in tables 1 and 2 still provide the only contributions 
at O ( U ~ " + ~ )  and O ( W ~ " + ~ )  respectively, but the diagrams listed in tables 3, 4 and 8 all 
contribute at 0(0~"+~)  and those in tables 5 ,  7. 9 and 10 at O(O~"+'~). Therefore, for the 
simple cubic lattice, if we define 
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Table 10. Additional contributions O ( ~ ( " + ~ ) q i - ~ ~ )  which appear for the simple cubic lattice. ' 
dcnotss a ring of six spins lying in a plane pupendlculnr to the axial direction which form two 
rings of four spins sharing an edge. 

f i - f o  h-fl A - A  fa-A 

It follows immediately from (11)-(21) that 

(n)n+l:" = 1 --x n = 0 . 1 . 2 , 3  
4 

(YZ)i:0 = 2(1 - x ) 

( y ~ ) ~ + l : ~  = 4x2(1 - x 2 )  n = 1,2 ,3  
(n) i :o  = (1 - x2)(6 + 3 2  +7x4 + x 6 )  

( ~ ) 2 : ,  = (1  - x 2 ) ( 3  - 6 2  + 16x4 +4x6) 

( ~ ) ~ + l : "  = (1 -~x2)(1 - 2x2 + 14x4 +4x6) 
(y4)1:0=2(1 -X2 ) (9+8X2+X4+14-x6+5X*+-x io )  

(&I = 2(1 - x2)(3 + 8x2 - 23x4 + 28.P + 16x8 + 6 ~ " )  
(y4)3:2 = 2(1 - xZ)(1 + 3.7' - 15x4 + 3 . 5 ~ ~  + 8x8 + 6 ~ " )  

n = 2,3 

(y4lk3 = 4 2 ( i  - 2)(3 - gX2+ 1gx4 + 4X6 + 3 2 ) .  

Regrouping the terms in this way shows that the results are quantitatively the same for the 
simple cubic lattice and for the lattice without loops. 

6. A simplified model 

The results of the previous sections suggest that there is an infinite sequence of layering 
transitions in the Abraham model for general qL. However, because of the complexity 
of the calculation, it has only been possible to show this explicitly for a small number of 
phases. To test our assertion further, we define a simplified version of the Abraham model 
where it is possible to demonstrate the existence of a larger number of layering transitions. 

We do this by restricting the number of excitations in the model whilst still retaining 
those thought to be important for layering. All disconnected diagrams and all diagrams with 
more than two flipped spins in any given layer are ignored. It is then possible to calculate 
the contribution of the remaining diagrams rather simply by using a transfer-matrix approach 
first introduced by Yeomans and Fisher [lo]. For this model we are able to find explicitly 
for n < 5 that interface phases of width O ( W ( * " + ' ) ~ ~ - ~ )  are stable and that the pattern of 
splitting remains the same. In each case the as defined in (4) agree to leading order with 
those obtained for the full model, at least to where the splitting has occurred, suggesting 
very strongly that the correct physics is not lost in the simplification. 

The transfer matrices we shall use build up the chain of flipped spins a layer at a time. 
Each matrix adds the flipped spins within a layer together with the corresponding Boltzmann 
weights. Multiplying the matrices together builds up the Boltzmann weights for all possible 
diagrams, given the initial and final states. Consider the matrix MI, which adds a layer of 

' 
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up (down) spins to a previous layer of up (down) spins. The rows of the matrix are labelled 
by the number of spin flips in the first layer, the columns by the number in the second layer. 
We consider the chain to be built up from left to right: 

C L O'DonneM and J M Yeomans 

+ znd layer .i. Is( layer 

) .i. ( h Z E L - 2  (1  +. 2(q1 - l)x*)waL-* ' 

M I =  ~i qJ.xwq'. 

Each matrix element includes the Boltzmann factor arising from the bonds between the 
layers and the in-plane bonds of the first layer. The count is governed by the number of 
ways that the flipped spins in the second layer can be added to those in the first layer. Two 
terms arise in the bottom right-hand element because the pairs of spins in the neighbouring 
layers can have either one or two axial connections. Similarly, the matrix which adds a 
layer of down (up) spins to a previous layer of up (down) spins is 

The additional Boltzmann factor and count associated with the flipping of the first spin 
in the chain can be added by row vectors 

if the chain begins at the the surface and 

if it does not. (We shall need only the cases given when the spin is parallel to the surface 
field or its left-hand neighbour.) The matrix product is closed by column vectors which add 
the Boltzmann factors associated with the in-layer contribution and the bond to the right of 
the final flipped spin. These are 

if the final flipped spin is parallel or anti-parallel respectively to its nearest neighbour outside 
the chain. 

It is not difficult to check that 

fn+l - fn = (S - S)M~*-~(E~ -E~) + S M ~ " - ~ ( M ~ E ~  - M ~ E , )  + S M ~ ~ - ' ( M ~  - M ~ ) E ~  

where the terms are ordered according to the axial length of the diagrams. Using (4) for 
h,, the free-energy difference (23) can be expanded in terms of o. Putting successive 
coefficients of powers of w equal to zero gives an expression for the phase boundaries 
between successive interface phases. The coefficients (Y are listed in table 11. 

The results in table 11 indicate that the pattern of the splitting of the phase boundaries is 
identical to that of the full Abraham model. For the simplified model we have been able to 
obtain results to 0(0"q1-'~) showing that phases up to at  least n = 5 are stable. Moreover, 
a comparison of the results of table 11 with the leading order terms of the expressions for 
aI, a*, , . . derived for the full model in section 4 shows that they agree to leading order. 
Therefore it s e e m  that the important physics is not lost in the simplification. Hence our 
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Table 11. The cwfficients which appear in the expansion of the phase boundaries (k&+g:" of 
the simplified model. 

Boundary Order 

2 : 1  3 : 2  4 : 3  5 : 4  6 : 5  
I 

1 
Y 1 X 2  

results provide evidence that the pattern in the exact model persists with increasing n and 
that at least a large number of phases are stable. Because the simplified model retains 
the diagrams driving the splitting of the phase boundaries, we may conclude that these are 
connected diagrams with at most two spins per layer. 

7. Mean-field theory 

In this section we take the mean-field limit of the low-temperature series expansion. The aim 
is to see whether the layering transitions persist and hence to ascertain whether mean-field 
theory gives a qualitatively correct representation of the phase diagram at low temperatures. 

We restrict ourselves to taking the mean-field limit within the planes, that is 41 + 00 

with qLJo fixed. In this limit the quantity 6 = wq1 is constant. Using 

and taking the limit 

h, = x 1 +a16 - --o I n 6  + (a2 +123)6' + 
'+ 03, equation (4) may be rewritten 

S f f q f 2 0 1 5 - p  ~- 2 w (Ino) 2I22 -* 
41 4 L 2  

4 a 4 + 2 c u 5 ~ 3 ~ n & +  (a4 +as +a,# + . . . . (25) ) - 
( 

41 
This boundary will only behave sensibly in the mean-field limit if a,, 1 2 2 + q ,  a 4 + a 5 + ~ y g  - 
O(1); 122. 4124 + 2cts - O(q1) and S a 4  + 2Cfs - 0(qL2) .  It can be seen from (1 1)-f17) that 
this is indeed the case providing a useful check on the calculations. 
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Using the expressions ( l l t (17 )  for the as the coefficients in (25) can easily be 
calculated. The n = 1 phase becomes stable O(G*lnG) and the n = 2 phase O(G31n&). 
Therefore, at least to this order of the expansion, the qualitative behaviour of the model 
remains unchanged in the mean-field limit. 

8. Discussion 

In this paper we have used a low-temperature series expansion to study the phase diagram 
of the Abraham model in dimensions d 2 3. We have been able to show that there are at 
least four layering transitions and presented arguments based on a simplified version of the 
model that there are a large, possibly infinite number of transitions beyond these. 

The calculation proved much more difficult than a similar approach to complete wetting 
in an k ing  model 141. In that case the leading term in the free-energy difference f.+l - f n  
was responsible for stabilizing the phase nf 1 for all n. In terms of diagrams the calculation 
of the contribution from single axial chains of length n sufficed to prove that an infinite 
number of layering transitions were stable. For the Abraham model, however, the number 
of terms in the free-energy differences needed to establish the stability of a phase n increases 
with n. Hence the calculation rapidly becomes prohibitively difficult and we were not able 
to formulate a general argument showing how successive states are stabilized. 

Armitstead and Yeomans [6] considered a solid-on-solid version of the Abraham model 
I where overhangs of the interface and bulk fluctuations are prohibited. This model is 

equivalent to a highly anisotropic limit of the system considered here. They again found that 
diagrams more complicated than single axial chains were needed to break the degeneracy 
of neighbouring phases. However, because the solid-on-solid condition provides a strong 
restriction on the number of allowed diagrams they were nevertheless able to prove the 
existence of an infinite number of layering transitions. 
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